虽然电动汽车能够一定程度上帮助消纳可再生能源。但是其充电活动所带来的功率增长也会给电网带来挑战。首当其冲的便是配变电设备的扩容要求。在居民社区使用典型的3kVA到7kVA充电桩会增加局域电网负载。尤其考虑到车主的充电习惯是下班回家后便插上电源开始充电,那么在无控制的前提下配电网必然会迎来一段充电高峰。然而英国电网在早期设计和铺设线路时,并未考虑未来会出现如此高密度的负荷增长,其所评估的用户分集后最大电力需求仅为2kVA每户,如图四所示[2]。我们可以注意到电热泵和充电桩所带来的增加负载会极大程度增加配电网的压降,导致终端用户电压过低和电网运行不稳定等问题。所以充电桩的部署可能会导致配电网设备在设计寿命未到之前便被要求更换,从而导致资产投资回报低于预期。

发电侧
当然,不光配电网会受到这种“整齐划一”的充电行为所影响,发电侧也会受到一定程度的冲击。从图一中我们其实就可以注意到充电的主要时间是集中在18:00-24:00,而这也与系统高峰时段相重合。图五就对比了英国未来二十年的充电活动对于系统峰值增加的贡献以及系统内可靠机组的总容量[1]。可以发现,在像英国这种富余机组不多的系统中,充电所带来的额外峰值到2035年可占机组重容量的8.4%。这也让英国政府在进行能源规划时不得不考虑增加可靠常规机组,以应对不断上涨的系统需求,保证系统安全运行。

4.解决策略
前两章节中,新能源汽车对可再生能源消纳方面的有限贡献以及对电网运维带来的困难。那么有哪些措施可以帮助缓解或解决这些困难呢?
首当其冲的应是发展多样化的新能源汽车产业。其实电动汽车只是新能源汽车行业的分支。以氢能源和天然气为燃料的燃料电池汽车也应成为大力推进的发展方向。增加可再生能源消纳的手段,引入天然气管网等其他能源网络,从而在新能源汽车行业实现能源互联。